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Methodology for designing a data service
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Identifying application needs

Which data model?

● Arrays, meshes, objects…

● Namespace, metadata

Which access pattern?

● Characteristics (e.g. access sizes)

● Collective/individual accesses

Which guarantees?

● Consistency

● Performance

● Persistence
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Service 
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• How should data be organized?

• Sharding

• Distribution

• Replication

• How should metadata be organized?
• Distribution

• Content

• Indexing

•

• How do clients interface with the service?
• Programming language

• API



HEPnOS: A Storage 
Service for High Energy 
Physics Applications
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Storing “Products”
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class Collision {

    double energy;

    std::array<double,3> position;

    ...

};

Data Model
● Many instances of small C++ objects
● Hierarchy of datasets, runs, subruns, and events
● Products accessible by “tag”

Access Pattern
● Write-once, read-many
● Products accessed atomically
● Access by “tag” and by type
● Iterators to navigate the hierarchy
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Envisioned usage

• Long-running (weeks), resizable cache based on fast, 
in-compute-node storage (SSDs, NVRAM, local memory)

• Accessed by multiple applications concurrently

• Backed-up by a more permanent storage system (parallel file 
system, archive system, object store) when undeployed
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Figuring out service requirements

Interface

● C++ interface with integrated serialization

● Need for batching features and non-blocking transfers

Backend

● Distributed key/value store

● Objects small enough not to be sharded

● No replication needed

● No overwrite allowed

Organization

● Path-like namespace

● Hashing function mapping paths to target
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Margo runtime
(Mercury + Argobots)

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C++ API

Boost, YAML
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Example of HEPnOS’s interface
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// initialize a handle to the HEPnOS datastore

hepnos::DataStore datastore( "config.yaml" );

// access a nested dataset

hepnos::DataSet ds = datastore[ "path/to/dataset" ];

hepnos::Run run = ds[43]; // access run 43 in the dataset

hepnos::SubRun subrun = run[56]; // access subrun 56

hepnos::Event ev = subrun[25]; // access event 25

// iterate over the subruns in a run 

// using a C++ range-based for

for(auto& subrun : run) { ... }

● Map-like access to the hierarchy of datasets, runs, subruns, and events
● Iterators to navigate the hierarchy



Example of HEPnOS’s interface
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struct Particle {

float x, y, z; // member variables

// serialization function for boost to use

template<typename A>

void serialize(A& a, unsigned long version) {

ar & x & y & z;

}

};

...

hepnos::Event ev = subrun[25]; // access event 25

// store data (an std::vector of Particle)

st::vector<Particle> vp1 = ...;

ev.store("mylabel", vp1);

// load data

std::vector<Particle> vp2;

sv.load("mylabel", vp2);

● Serialization based on Boost
● Load/Store functions



FlameStore: a Storage 
Service for Deep 
Learning Workflows
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Storing neural networks
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Data Model
● Large weight matrices
● Neural network architecture

Access Pattern
● Not many neural networks
● Writes, updates, and reads
● Neural networks accessed atomically
● Access by name within a flat namespace
● The application is not I/O bound
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Envisioned usage

• Workflow running for a few hours to a few days

• Storage system spanning the workflow allocation

• Backed-up by a more permanent storage system (parallel file 
system, archive system, object store) when undeployed
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Figuring out service requirements

Interface

● Python interface easy to use with Keras

● Need for efficient access to tensors memory

Backend

● Single key/value store for metadata

● Distributed blob storage w/ efficient bulk transfers

● No replication needed

● Overwrite allowed

Organization

● Flat namespace

● Hashing function mapping name to target
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Example of FlameStore’s interface
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● Integrates with Keras code through the callback interface
● Enables checkpointing the optimizer in addition to weights
● Records the model’s architecture using JSON

with Engine('tcp', use_progress_thread=True, mode=pymargo.client) as engine:

    client = Client(engine)

    provider = client.lookup(provider_addr, provider_id)

    ...

    callback = RemoteCheckpointCallback(model_name='MyModel',

            client=client, provider_addr=provider_addr,

    provider_id=provider_id))

    model = ...

    model.fit(... callbacks=[callback])

    ...

    model = client.load_model(provider, 'MyModel')

    optimizer = client.load_optimizer(provider, 'MyModel')



Mobject: an Object 
Storage Service tailored 
for HPC
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Storing objects for HPC
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Data Model
● Mimic the RADOS data model
● Objects are byte arrays identified by unique names
● Objects can be written incrementally by many processes
● Associate key/val attributes with objects

Access Pattern
● Objects will be accessed/updated concurrently, by potentially 

many processes
● Object accesses tend to be large & aligned, but small strided 

accesses critical to performance
● Accessed directly by apps and by middleware systems
● Expect a mix of read and write

User 
Requirements



Envisioned usage

• In-system object store deployed alongside application(s) as 
primary I/O provider

○ Dedicated nodes or co-located with app nodes

• Typically backed by persistent memory devices, but can also offer 
in-memory object storage

○ Similar to prior examples, mechanisms exist to migrate to 
more appropriate levels in the storage hierarchy
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Figuring out service requirements

Interface

● C interface implementing a subset of the RADOS API

● Simple POSIX-like API for accessing object extents

Backend

● Distributed blob storage w/ efficient bulk transfers

● Distributed metadata w/ a kv per blob store

● Log-structured object storage abstraction

● No replication

Organization

● Flat namespace

● Hashing function mapping name to target
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Example of Mobject’s interface
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● Simple, POSIX-like create/read/write interface for accessing object data
● Implements the RADOS write_op and read_op interfaces, allowing clients to submit lists 

of I/O operations for a given object

{

rados_write_op_t create_op;

rados_op = rados_create_write_op();

rados_write_op_create(rados_op, LIBRADOS_CREATE_IDEMPOTENT, NULL);

rados_write_op_write(write_op, (const char *)buffer, length, offset);

... /* more operations */

ret = rados_write_op_operate(rados_op, rados_ioctx, object_name, NULL, 0);

rados_release_write_op(rados_op);

if (ret)

        fprintf(stderr, "unable to create RADOS object", ret);

}



Mobject performance results

• Using IOR (with RADOS backend) 
as a driver, compare a couple of 
different Mobject deployments 
against GPFS on Cooley system @ 
Argonne

○ Kove devices are 
network-attached 
persistent memory devices

○ tmpfs deployment is directly 
to RAM (not persistent)
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